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Abstract. Simple models for crack growth which are closely related to the diffusion-limited 
aggregation ( DLA)  model have been explored using computer simulations. In these models 
the bond-breaking probabilities for bonds at the surface of a growing crack in a two- 
dimensional (triangular) network of bonds and nodes are proportional to (8,)” and 8, is 
the bond strain. Our results indicate that the cracks generated by these models have a 
fractal structure and that their effective dimensionalities depend on both the bond-breaking 
probability exponent (7) and the boundary conditions (which bonds are considered to be 
surface bonds that can be broken) at the crack surface. Very similar results were obtained 
using shear and dilational strain. 

1. Introduction 

The failure of materials under stress is a complex process involving a broad range of 
physical, chemical (Latanison and Jones 1987) and sometimes biological processes. 
Most failure processes of practical importance exhibit a rich phenomenology (Latanison 
and Pickens 1983, Ghandi and Ashby 1979, Ashby et a1 1979) extending over a wide 
range of length scales from the atomic level to the overall size of the system. Because 
most failure processes involve complex interactions between a quite large number of 
processes, it has in most cases been difficult to develop understanding on a fundamental 
level. Nevertheless, considerable advances have been made towards developing a 
satisfactory understanding of mechanical failure processes on a phenomenological 
and/or statistical basis. Even in ideal homogeneous materials a complex non-local 
stress-strain field develops as the material begins to fail and an understanding of the 
evolution of the stress-strain field is an important ingredient in developing a better 
understanding of material failure. In this regard mechanical failure is similar to a 
variety of other processes which lead to the formation of complex patterns such as 
fluid-fluid displacement in a porous medium or Hele-Shaw cell and dielectric break- 
down in which the complex structure is generated by amplification of growth 
instabilities. Under some conditions these processes can be understood in terms of 
the diffusion-limited aggregation ( D L A )  model of Witten and Sander (1981) in which 
the growth probabilities in a random growth process are controlled by a scalar field, 
4, which obeys the Laplace equation (V’C#J = 0). In the case of fluid-fluid displacement 
in a porous medium (Paterson 1984, Maloy er a1 1985) or Hele-Shaw cell (Nittmann 
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et a1 1985, Ben-Jacob et a1 1985) the field obeying the Laplace equation is the pressure 
field in the viscous fluid which is being displaced by a non-viscous fluid. In the case 
of dielectric breakdown (Niemeyer et a1 1984) the field obeying the Laplace equation 
is the potential field in the non-conducting dielectric medium. The DLA model has 
also been shown to provide a basis for understanding a variety of other random pattern 
formation processes in which the growth process is controlled by a field obeying the 
Laplace equation (see Ball (1986), Meakin (1988), Matsushita (1988) and Sander 
(1986) for reviews). In all of these processes the magnitude of the potential field 4 
at each point in the space surrounding the growing structure depends on the surface 
of the entire structure. 

The success of the DLA model in describing random growth processes controlled 
by a Laplacian field suggests that a similar approach might be of value in developing 
a better understanding of mechanical failure processes controlled by the vector stress 
and strain fields in a linear elastic medium. In this case the stress and strain fields are 
related by the Navier equation (England 1971): 

where A and p are the Lame coefficients and U, is the ith component of the displacement 
field (Landau and Lifshitz 1975). One of the most important characteristics of structures 
generated by DLA models is their fractal geometry (Mandelbrot 1982). In the absence 
of long-range anisotropy, the DLA model leads to the formation of patterns which have 
a fractal dimensionality ( D )  of about 1.71 for d = 2 and about 2.50 for d = 3  (Witten 
and Sander 1981, Meakin 1983a, b). These values are in quite good agreement with 
those measured in experimental realisations of the DLA process. The formation of 
fractal surfaces in mechanical failure processes is suggested by everyday experience 
and has been investigated more carefully for a variety of systems including steel 
(Mandelbrot et a1 1984, Underwood and Banerji 1986), titanium (Pande er a1 1987), 
and a two-dimensional array of polystyrene microspheres (Skjeltorp and Meakin 1988). 
Computer simulations have been used extensively to explore various aspects of 
mechanical failure. Most of these simulations have been carried out using a molecular 
dynamics approach (Alder and Wainwright 1957, Rahman 1964, Wood and Erpenbeck 
1976, Jones and Gerberich 1985). This method has been used to explore hydrogen 
embrittlement (Grehlen et a1 1976, other Rehbinder effect phenomena (Shchukin and 
Yushchenko 198 1) and crack propagation in a two-dimensional Lennard-Jones solid 
(Puskin et a1 1980, Chakrabarti et a1 1986). 

A second approach is to represent the elastic medium by a network of nodes joined 
by Hookean springs (Kausch 1978, Mikitishin eta1 1969, Dobrodumov and Elyashevich 
1973, Louis er a1 1986, Termonia and Meakin 1986, Louis and Guinea 1987, Meakin 
1987). In particular, the model of Louis and Guinea is quite closely related to DLA 
(particularly the dielectric breakdown model implementation of DLA introduced by 
Niemeyer et a1 (1984)). The models used in the work described in this paper are very 
closely related to the crack propagation model of Louis and Guinea. In this model 
the probability that a bond at the surface of a propagating crack will break is propor- 
tional to the strain (6)  associated with that bond. Here we investigate models in which 
the bond-breaking probability is given by 

PI - 6: (2) 
where P, is the bond-breaking probability for the ith surface bond. 
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For the closely related dielectric breakdown model (Niemeyer et a1 1984) the fractal 
dimensionality of the breakdown pattern changes continuously as the exponent 7 in 
equation (2)  is changed. Similar behaviour is expected for the crack growth models 
which are the subject of this work. In general, we might expect that the dependence 
of the bond-breaking probability P, on the bond strain 6, could be almost any 
monotonically increasing function of 6, ( f (  6 , ) ) .  We restrict ourselves to the case 
f ( 8 , )  = (8,)’’ since only simple homogeneous functions of 6, are expected to generate 
cracking patterns with simple geometric scaling properties. In addition, the effects of 
different local ‘growth rules’ at the propagating crack surface are explored. This work 
was stimulated when substantial discrepancies were found between two independently 
developed cracking models. These discrepancies were eventually traced to different 
local growth rules at the crack surface. Similar effects are found for the DLA and 
dielectric breakdown models, but the effects are quite small and both models appear 
to give the same asymptotic fractal dimensionality. The cracking models investigated 
in this work are considerably more sensitive to the local boundary conditions. 

2. Computer models 

In all of our simulations a two-dimensional elastic medium is represented by a triangular 
network of nodes connected by Hookean springs which have a n  equilibrium length of 
lo .  At the start of a simulation, each of the nodes (except for those at the edge of the 
system) is connected to six nearest neighbours. For the system the elastic energy E is 
given by 

where I ,  is the length of the bond joining the ith and  j t h  nodes and  k,  is the force 
constant associated with the bond joining these nodes. Here k,] = k if the nodes are 
joined and k ,  = 0 otherwise. At the start of each simulation the array of bonds and 
nodes is either isotropically dilated (typically by O.l0/o) or sheared in either the X or  
Y directions by the transformation ( X , ,  Y , ) + ( X , + n Y , ,  Y , )  or  ( X j ,  y ) +  
( X I ,  Y, + ax,). In most of our simulations a value of 0.01 was chosen for a. For both 
dilation and  shear, small strains were used to ensure that our simulation results were 
not influenced by non-linear effects. We also carried out simulations with larger strains 
to explore the effects of these non-linearities. The results from these simulations 
indicated that for the values of the dilation and shear strains indicated above, we are 
well within the linear regime. Under these conditions, the elastic energy can be written, 
within the harmonic approximation, as 

where U, and U, are the displacements of the ith and  j t h  nodes and  r,, is a unit vector 
in the direction of the bond joining these nodes. 

At the start of a simulation, a bond near to the centre of the network is broken 
and the system is relaxed to mechanical equilibrium (the elastic energy in equation 
(3) is minimised) using standard relaxation methods (de  G Allen 1954) including block 
relaxation and  overrelaxation. In addition, extra relaxation cycles were used for those 
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bonds in the vicinity of the (last) broken bond. The relaxation procedure was stopped 
when the largest displacement of any node from its local equilibrium position is smaller 
than 0.01 times the initial bond strain. This would not ordinarily be sufficient to 
guarantee an accurate convergence, but relaxation of the whole system continues as 
other bonds are broken and the additional relaxation near to the last broken bond 
ensures almost complete relaxation in this region. Tests with different values for the 
largest local displacement indicated that our criterion for stopping the relaxation was 
adequate. Similar results were obtained without overrelaxation using simulations in 
which Gauss-Seidel iteration was continued until the maximum force in any node was 
less than 0.001 times the initial force on the boundary nodes. After the network has 
been relaxed, the strains (Si) associated with each of the bonds at the surface of the 
‘crack’ formed by the broken bond(s) are obtained and one of these bonds is randomly 
selected with probabilities given by Pi/& P,.  The process of crack propagation is then 
simulated by a sequence of random bond-breaking and relaxation events. Throughout 
the simulations, the positions of the nodes at the edges of the network are fixed. 

Several versions of the model were investigated in which different definitions of 
the crack surface bonds (bonds which may be broken) were used, as shown in figure 
1 .  In model I only those bonds which are at the edge of the crack may be broken. In 
model I1 those bonds associated with ‘damaged’ nodes (nodes for which one or more 
of the associated bonds is already broken) may be broken, and in model I11 all of the 
bonds associated with all of the nodes at the crack surface may be broken. 

In most of the simulations, the triangular network of bonds and nodes consisted 
of 160 rows and 160 nodes (the equilibrium size of the system is 1601 in the X direction 

Model 

X 

\ 

Figure 1. Definition of the surface bonds used in models I, I1 and I11 respectively. The 
broken bonds are indicated by broken lines and the damaged nodes by large dots. The 
full lines indicate those bonds (the crack surface bonds) in the triangular network which 
may be broken in the next stage of the crack growth simulations. 
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and 1 6 0 ( m ) 1  in the Y direction). The crack propagation process was stopped before 
the crack tips approached closely to the edges of the network. 

3. Results 

The results obtained from typical simulations carried out with isotropic dilation (0.1 O h )  

and a value of 1.0 for the exponent 7) are shown in figure 2 for models I, I1 and 111. 
In this figure (and in other figures in this paper) the locations of the broken bonds in 
the original (undistorted) network are indicated. It is evident from this figure that 
these three models lead to similar randomly branched structures, but the different local 
rules for the bonds which may be broken at the crack surface have a substantial effect 
on the crack structure (at least on short length scales). 

I 
I 

I I 
I 

I 
I 

I 
i 

Model I 1  
q = l  dilat ion 
s.2918 f.160 

I 
Model I 

~ q = l  dilat ion 

____ S.1210 1.160 
4 * -  

12510 12010 

I 

i 4 

- $3;- Figure 2. Cracks generated by models I ,  I1 and I11 
for a small dilational strain and a value of 1.0 for 

7.1 dilat ion the growth probability exponent r). Here s is the 
number of broken bonds in each of the cracks. These 
figures indicate the location of the broken bonds in 

hc.. 
Model 111 .$- 

1 . ~ ~ 1 6 9 6  f = l 6 0  
+ 

1201,. the undistorted network. 
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Figure 3 shows similar results obtained from models I, I1 and I11 for the case of 
shear strain. In all three cases the cracks have a characteristic branched X shape. 
These results were obtained using shear in the X direction, but very similar results 
were also obtained with shear in the Y direction (for a triangular lattice the X and 
Y directions are not equivalent-see figure 1). 

Simulations have also been carried out using models I, I1 and I11 for both dilation 
and shear with values of 0.5 and 2.0 for the growth exponent 7. Typical results are 
shown in figure 4 for model I and dilational strain. Figure 5 shows the results obtained 
from other simulations with both shear and dilational strain with different models and 
exponents 7. A qualitative comparison of the cracks shown in figures 2-5 suggests 
that the exponent 7 has a large effect on the crack morphology and that the fractal 
dimension of the cracks can be decreased by increasing 7. Similar results have been 
obtained previously for both the DLA (Matsushita et a1 1986) and dielectric breakdown 

I 

I 

I I 
i 

1 I s.3200 L.160 

t * t  
12510 1201, 

~ 

~ 

i 
~ 

I 

______ 
Figure 3. Cracks generated using models I ,  I 1  and 
I11 with a small shear strain in the X direction and 

results were obtained with shear in the Y direction. 

s=3130 Lr160 

4 a value of 1.0 for the growth exponent 7. Very similar 
125ia 
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I l  
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I 1  
I 1  

I 

I '  

' Model I 

1 s.813 L.160 
I q.2 0 dilation I s = 3200 L =160 . . .  . 

loolo 12510 

Figure 4. Cracks generated using model I and dilational strain for growth exponent 7 = 0.5 
and 2.0. 

models (Niemeyer er a1 1984). A more quantiative assessment of the effects of model 
parameters on the cluster geometry can be obtained from the dependence of the radius 
of gyration of the crack (R,) on the number of broken bonds. Figure 6 shows the 
results obtained from eight simulations carried out using model I11 with a value of 1.0 
for the exponent 7. The dashed line has a slope of 0.601 corresponding to an effective 
fractal dimensionality ( D p )  of 1.66 which is quite close to the fractal dimensionality 
of 1.71 associated with the two-dimensional DLA model (Meakin and Sander 1985). 
The results obtained from this and the other models (for 7 = 1 and 7 =2)  are shown 
in table 1. For 7 = 0.5 all of the models generated cracks with effective fractal 
dimensionalities in the range 1.90-2.0. Each ofthe results shown in table 1 was obtained 
using between three and ten simulations. The statistical uncertainties are typically 
0.05-0.10 (depending on the model and the number of clusers used). The results shown 
in table 1 indicate that D increases continuously as 7 is decreased. Similar behaviour 
is associated with the dielectric breakdown model (Niemeyer et a1 1984). For both 
models D = 2 for 7 = 0 and D = 1 for 7 + W .  However, we do not know if a fractal 
dimensionality of 1 is reached only for 7 = CO or for 7 > 7o where qo has a finite value. 
Similarly, for small values of 7 we expect that the limiting value D = 2 is reached only 
for 7 = 0, but the possibility that D = 2 for 7 > 0 cannot be eliminated using computer 
simulation results alone. 

4. Discussion 

Using a model closely related to model 111, Louis and Guinea (1987) generated cracks 
with an effective fractal dimensionality of 1.55*0.05 (for 7 = 1 with dilation). They 
found that essentially the same fractal dimensionality was obtained with shear strain 
( D  = 1.60*0.05) and suggested that both models may generate cracks with the same 
asymptotic fractal dimensionality as DLA clusters (Witten and Sander 1981). The results 
obtained here are in quite good agreement with this earlier work. However, the results 
shown in table 1 suggest that the fractal dimensionality of cracks generated using 
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Figure 5. This figure Shows the effects of the bond-breaking probability exponent 7 on 
simulations carried out with shear and dilational strain. 

model I is smaller than that obtained using model 11. There is also evidence that the 
fractal dimensionality associated with model 111 might be larger than that found for 
model 11. 

As we have noted above, the relationship of these models to DLA and other (scalar 
Laplacian) growth mechanisms is unclear at the moment. It is interesting to note, 
however, that many of the qualitative features of our simulations can be compared to 
corresponding features of the better-known DLA problem. For example, it is clear from 
our simulations that the effect of the underlying lattice is not negligible and, in fact, 
depends on the boundary conditions at the surface of the crack (i.e. whether we are 
using models I, I1 or 111). Somdhing of this sort is known in DLA-type simulations 
(Nittmann and Stanley 1986). In fact, the apparent difference in fractal dimension 
between the models may be a ressh of this sort of effect, i.e. model I11 may be the 
least sensitive to lattice perturbations. Similarly, the introduction of external shear 
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Figure 6. Dependence of the radius of the crack gyration (R,) on the number of broken 
bonds (s) obtained from eight simulations carried out using model 111 with dilational strain 
and a bond-breaking exponent 17 = 1. 

Table 1. Effective fractal dimensionalities obtained from the crack growth models 

Growth exponent Stress field Model De R 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 

Dilation 
Dilation 
Dilation 
Shear 
Shear 
Shear 

Dilation 
Dilation 
Dilation 
Shear 
Shear 
Shear 

I 
I1  
111 
I 
I 1  
111 

I 
11 
111 
I 
I 1  
111 

1.35 
1.51 
1.66 
1.42 
1.62 
1.65 

1.12 
1.16 
1.45 
1.17 
1.49 
1.40 

corresponds to the introduction of a preferred direction in the material. In the case 
of DLA, when there is a preferred direction in the sticking probability, the structure 
crosses over into a non-fractal pattern which reflects the anisotropy of the sticking 
(Ball et a1 1985). This may be a clue that the apparent change in fractal dimension 
in this case may be a crossover to a lattice-dominated pattern. 

Our results also indicate that the fractal dimensionality is sensitive to the value of 
the growth probability exponent 7. This is not surprising in view of the well established 
fact that D depends on 7 in the dielectric breakdown (Niemeyer er a1 1984) and DLA 

(Matsushita et a1 1986). All of our estimates for the fractal dimensionality are based 
on the observation of a power-law relationship between the radius of gyration R ,  of 
the crack (broken bonds) measured on the unstrained network (R,) and the number 
of broken bonds s: 

R, - s p .  
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In all cases the dependence of In R, on In s was quite linear for the larger values of 
s (see figure 6 for a typical example). 

Hinrichsen et a1 (1988) have carried out similar simulations using model I and 
model I1 boundary conditions with uniaxial compression and shear strains. Using 
model I boundary conditions with shear strain, they find an effective fractal dimension- 
ality Dp = 1.35iO.05 from the dependence of R, on s. This result is in reasonably 
good agreement with the value of 1.42 (with similar statistical uncertainties) found in 
this work. However, Hinrichsen et a1 also measured the dependence of the principal 
values of the inertial tensor on s and obtained a fractal dimensionality of 1.28k0.06 
from the scaling of the largest value with s. They argue that the cross-shaped cracking 
patterns generated by shear strain consist of two cracking patterns having the structure 
of uniaxial compression cracks for which they measured a fractal dimensionality of 
1.22 i 0.05. Based on these results Hinrichsen et a1 suggest that the fractal dimension- 
alities of the cracks produced by these models may have a universal value independent 
of the strain boundary conditions. A more detailed theoretical analysis and/or much 
larger-scale simulations will be needed to determine if these ideas are correct. 

In order to draw more definitive conclusions, much more extensive, larger-scale 
simulations would be needed. This is not possible with our present algorithms and 
computer resources. It is clear from this work that much more efficient algorithms will 
be needed to make further progress. We are now working in this direction. 
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